Skip to main content


The original 2D version of the full DigiBog is described in papers 3 and 4 below. We recommend that anyone interested in using the model read these two papers first. Subsequent model developments are covered in papers 7 , 9 and 10.

  1. Andy J. Baird, Lisa R. Belyea and Paul J. Morris, (2009) Upscaling of peatland-atmosphere fluxes of methane: Small-scale heterogeneity in process rates and the pitfalls of “bucket-and-slab” models. Carbon Cycling in Northern Peatlands. AGU Monograph Series, vol. 184: 37–53. This paper contains an application of DigiBog_Hydro.
  2. Paul J. Morris, Lisa R. Belyea and Andy J. Baird, (2011) Ecohydrological feedbacks in peatland development: a theoretical modelling study. Journal of Ecology, 99: 1,190–1,201. Although DigiBog is not explicitly described in this paper, 'MODEL III' in the paper is a 1D version of the full DigiBog.
  3. Andy J. Baird, Paul J. Morris and Lisa R. Belyea, (2012), The DigiBog peatland development model 1: rationale, conceptual model, and hydrological basis. Ecohydrology, 5: 242–255. DigiBog_Hydro is described in detail in this paper.
  4. Paul J. Morris, Andy J. Baird and Lisa R. Belyea, (2012), The DigiBog peatland development model 2: ecohydrological simulations in 2D. Ecohydrology, 5: 256–268. The paper describes the first full DigiBog.
  5. Paul J. Morris, Andy J. Baird and Lisa R. Belyea, (2013), The role of hydrological transience in peatland pattern formation. Earth Surface Dynamics, 1: 29–43. This paper uses elements of DigiBog (mostly DigiBog_Hydro) in a separate model of peatland patterning.
  6. Graeme T. Swindles, Paul J. Morris, Andy J. Baird, Martin Blaauw, and Gill Plunkett, (2012), Ecohydrological feedbacks confound peat‐based climate reconstructions. Geophysical Research Letters, 39: L11401. This paper uses a 1D version of the full DigiBog.
  7. Paul J. Morris, Andy. J. Baird, Dylan M. Young and Graeme. T. Swindles, (2015), Untangling climate signals from autogenic changes in long-term peatland development. Geophysical Research Letters, 42: 10,788–10,797. This paper uses a 1D version of the full DigiBog.
  8. Andy J. Baird, Robert Low, Dylan Young, Graeme T. Swindles, Omar R. Lopez and Susan Page, (2017), High permeability explains the vulnerability of the carbon store in drained tropical peatlands. Geophysical Research Letters, 44: 1333-1339. This paper uses DigiBog_Hydro and part of the full DigiBog.
  9. Dylan M. Young, Andy J. Baird, Paul J. Morris and Joseph Holden, (2017), Simulating the long‐term impacts of drainage and restoration on the ecohydrology of peatlands. Water Resources Research, 53: 6510-6522. The most up-to-date published version of the full DigiBog is used in this paper. The version of DigiBog in this paper has provided the basis for the latest improvements to the model.
  10. Young, D.M., Baird, A.J., Charman, D.J. et al. Misinterpreting carbon accumulation rates in records from near-surface peat. Sci Rep 9, 17939 (2019). Uses the full version of DigiBog with the lumping algorithm designed and implemented by Pete Gill.
  11. Young, D.M., Baird, A.J., Gallego-Sala, A.V. et al. A cautionary tale about using the apparent carbon accumulation rate (aCAR) obtained from peat cores. Sci Rep 11, 9547 (2021). Uses a simple peatland model and DigiBog to show why aCAR should not be used to compare past and current C accumulation rates.

Other related publications

  1. Belyea, L. R. and Baird, A. J. (2006), Beyond “The Limits to Peat Bog Growth”: Cross-Scale Feedback in peatland development. Ecological Monographs, 76: 299-322.
  2. Paper 10 above was challenged by Heinemeyer, A. and Ashby, M.A. “Constructive criticism of “Misinterpreting carbon accumulation rates in records from near-surface peat” by Young et al.: Further evidence on charcoal impacts in relation to long-term carbon storage on blanket bog under rotational burn management.” This paper was submitted to Scientific Reports; it was also uploaded to a pre-print server. The original submission and a revised version have been uploaded on a pre-print server; both versions can be downloaded here. The authors of paper 10 above responded to Heinemeyer and Ashby’s piece in a Reply, see here. The Reply and Heinemeyer and Ashby’s submission were reviewed by two independent reviewers. Heinemeyer and Ashby’s submission was rejected by Scientific Reports after the peer review. Since their submission was rejected, Heinemeyer and Ashby removed a mistaken comment about SCPs (spheroidal carbonaceous particles) made in their first pre-print (we made no comment about SCPs – see point five in our Reply), which is why no mention of SCPs is in made in their second version. They do not comment on this removal or the original error.